Saarbrücker Physikerteam
Auf dem Weg zum Quantencomputer

In Quantencomputer werden große Hoffnungen gesetzt, weil sie wesentlich schneller und komplexer rechnen können als heutige Supercomputer – insbesondere in einem Quanten-Netzwerk. Viele Forschungsfragen dazu sind jedoch noch ungelöst, etwa wie man Fehlerquellen beim Quantenrechnen umgeht oder bestehende Glasfasernetze für die Verknüpfung von Quantenrechnern nutzen kann.

© Oliver Dietze

Daran forscht auch ein Physikerteam der Universität des Saarlandes, das in sechs verschiedenen Projekten vom Bundesforschungsministerium mit rund zehn Millionen Euro gefördert wird. Im Vergleich zu den klassischen Computern wären Quantencomputer überall dort nützlich, wo extrem große Datenbanken durchsucht werden müssen oder bei Simulationen riesige Datenmengen anfallen. „Das kann in der Finanzwirtschaft sein, wo komplexe Prozesse optimiert werden sollen, oder in der Medizin, um auf Basis von Gensequenzierungen individualisierte Therapien zu entwickeln“, nennt Giovanna Morigi, Professorin für theoretische Physik, als Beispiel für mögliche Anwendungen. Bis dahin gibt es aber noch einige harte Nüsse zu knacken, einer ganz wesentlichen ungeklärten Frage ist die Saarbrücker Forscherin auf der Spur.

„Der Quantencomputer unterliegt kleinen Rechenfehlern, die seine Genauigkeit beeinträchtigen können. Diese Fehler entstehen häufig durch zufällige Schwankungen und Unordnung; man spricht von einem Rauschen“, erläutert Morigi. Bisher haben Quantenphysiker sich darauf konzentriert, solche Fehler zu vermeiden, in Zukunft wollen sie diese stattdessen ausnutzen. „Wir streben einen Paradigmenwechsel an, indem wir nicht nur Methoden entwickeln, mit denen die Fehlerquellen abgeschwächt werden können, sondern wir wollen auch Quantenalgorithmen entwerfen, die vom Rauschen der Quantenzustände profitieren. Das ist vergleichbar mit einem Vogelschwarm, der sich selbst organisiert, indem einzelne Vögel leicht ausscheren, also Fehler begehen, die aber sofort korrigiert werden, weil sich benachbarte Vögel an die neue Route anpassen“, erklärt die Physikerin.

© Jürgen Eschner

Das ist vergleichbar mit einem Vogelschwarm, der sich selbst organisiert.

Giovanna Morigi, Professorin für theoretische Physik

In einem von ihr geleiteten Verbundprojekt sollen Algorithmen für vier Anwendungsfelder entwickelt werden. Darunter fallen Optimierungsprobleme in der Logistik, die Verarbeitung von riesigen Datenbeständen (Big Data), die Datenbanksuche sowie Modelle etwa aus der Teilchenphysik. Das auf drei Jahre angelegte Forschungsprojekt wurde erst kürzlich vom Bundesministerium für Bildung und Forschung (BMBF) bewilligt. Weitere fünf Projekte, an denen Saarbrücker Quantenphysiker beteiligt sind, erhielten im Laufe des vergangenen Jahres die Förderbescheide. Darüber fließen insgesamt rund zehn Millionen Euro Drittmittel an die Universität des Saarlandes, die Gesamtprojektsummen liegen um ein Vielfaches höher.

Damit Quantencomputer ihren Weg in die Praxis finden, ist noch eine weitere große Hürde zu nehmen: die Datenübertragung und Kommunikation zwischen mehreren Quantencomputern. Die Saarbrücker Forscher wollen dafür eine Glasfaserverbindung zwischen der Universität des Saarlandes und der Hochschule für Technik und Wirtschaft (htw) als Teststrecke nutzen. „Quantencomputer können nicht über das Internet miteinander verbunden werden. Um sie zu vernetzen, bedarf es besonderer Schnittstellen zwischen den Quantenspeichern, zum Beispiel einzelnen Atomen, und den Telekom-Glasfasern. Wir erforschen, wie die Quantenknoten, an denen Quantenprozessoren operieren, miteinander kommunizieren“, erläutert Projektleiter Jürgen Eschner.

© Iris Maurer

Quantencomputer können nicht über das Internet miteinander verbunden werden.

Jürgen Eschner, Professor für Experimentalphysik

Der Experimentalphysiker hofft, dass es in drei Jahren gelingen wird, Quantensignale zwischen den beiden Hochschulstandorten zu senden und zu empfangen. Von dieser Forschung sollen nicht nur Doktorandinnen und Doktoranden der Universität des Saarlandes, sondern auch Industriepartner profitieren. In einem zweiten BMBF- geförderten Projekt will Jürgen Eschner daher gemeinsam mit Informatikern an der Hochschule Ruhr West und weiteren Partnern ein Quantum Technology Fablab als Ausbildungslabor einrichten. Über Virtual Reality-Anwendungen sollen an verschiedenen Standorten die Kompetenzen für Quantentechnologien aufgebaut und gemeinsame Projekte mit der Industrie ermöglicht werden.

Der Dritte im Bunde der saarländischen Quantenphysik ist Christoph Becher, Professor für Quantenoptik der Saar-Universität. Er ist unter anderem der Sprecher eines großen Verbundprojekts, das mit Hilfe der Quantenphysik ein Netzwerk aufbauen will, das zum einen physikalisch garantiert abhörsichere Kommunikation über große Distanzen ermöglicht, perspektivisch aber auch die Verknüpfung von Quantenrechnern verwirklichen soll (siehe Presseinfo). Zu diesem Zweck werden in einem weiteren Forschungsprojekt Komponenten für eine verlustarme Quantenkommunikation zusammen mit Industrieunternehmen zur Fertigungsreife entwickelt. Ebenso forscht Christoph Becher an der grundlegenden Hardware für einen Quantencomputer, der mit Licht „rechnet“. Dazu werden in Saarbrücken spezielle quantenphysikalische Lichtzustände erzeugt, während weitere Partner spezielle „optische Chips“ herstellen, auf denen die Rechenoperationen dann durchgeführt werden.

Alle gemeinsam profitieren von der engen Verbindung ins Forschungszentrum Jülich, wo seit zwei Jahren der Quantenphysiker Frank Wilhelm-Mauch forscht und das Projekt OpenSuperQ als Teil der großangelegten europäischen Quanten-Initiative leitet sowie an weiteren nationalen Projekten beteiligt ist. Er hat weiterhin seine Professur an der Universität des Saarlandes inne und betreut an beiden Standorten Nachwuchsforscher.  

Weitere Informationen zu den vom BMBF geförderten Forschungsprojekten mit Saarbrücker Federführung oder Beteiligung:

Text:Friederike Meyer zu Tittingdorf
03/10/2022 - 10:00
Friederike Meyer zu Tittingdorf
Zum Seitenanfang

Bund fördert

6

Projekte mit

10

Millionen Euro